

尖锐声脉冲的主要原因是过度打磨。在手工打磨中,突然出现的尖锐声脉冲刺激工人的耳朵,会损伤听力,造成听力下降,甚至造成耳膜穿孔、,导致工作质量下降。在机械打磨过程中,声音可能会超过设备的警报,这可能会在设备运行过程中对工人的健康和设备造成损害。对于智能系统,由于铸造变形结构的不确定性,预测可能不准确,并且容易产生突然尖锐的声音脉冲。这可能导致设备和工件损坏,并可能导致严重事故。
铸造后处理过程中环境噪声大,迫切需要工业机器人实现无人化铸造后处理。有必要研究和分析该技术,以克服打磨过程中高密度粉尘、大振动、高温碎屑飞溅和尖锐声脉冲的挑战。除了打磨过程中的挑战之外,铸件实体设计中的非结构特征和铸造过程中整体倾斜形状的时间变化对铸件的后处理有严重影响。







大学的徐和他的团队提出了一种基于恒力机制的机器人打磨末端执行器的设计。所设计的工业机器人驱动末端执行器进行抛光,末端执行器被动调节接触力。力的精度为0.3 N,使得工件的表面质量具有很高的一致性.
从上面提到的打磨机器人的发展,可以明显看出打磨机器人正在走向标准化。控制力和位移精度是末端执行器设计的主要研究方向。采用恒力打磨和恒力夹紧控制力,大大提高了打磨精度和夹紧稳定性。然而,由于材料特性和恒力机构尺寸的限制,当末端工具移动时,末端执行器具有不足的负载、过于复杂的结构和不足的平面刚度。


用现代设备改造传统的粉磨工业是实现低成本的动力之源和必要手段。这对推动打磨技术进步、提高劳动者素质、提高铸造企业效益、优化产业结构调整、促进制造业发展具有重要意义。同时,市场对具有快速响应、高精度和薄脆性的工艺也有很大的期望。
复杂工件打磨的技术挑战:快速响应、薄脆性和高精度
快速响应、高精度、薄脆性是市场在高体积、低成本基础上的进一步需求,也是目前实验室研究人员正在攻关的方面。